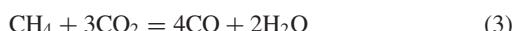
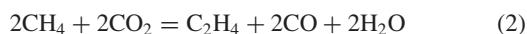


Novel Catalysts for Carbon Dioxide-induced Selective Conversion of Methane to C₂ Hydrocarbons

Yingchun Cai, Lingjun Chou, Shuben Li,* Bing Zhang, and Jun Zhao

State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China

(Received April 15, 2002; CL-020327)



The combination of Mn with BaCO₃ leads to active catalysts for carbon dioxide-induced selective conversion of methane to ethane and ethylene in the absence of oxygen.

The development of new routes for effective utilization of methane and carbon dioxide is of great interest in chemistry. In last two decades, a large amount of research papers have been published on the oxidative coupling of methane with O₂ to produce C₂ hydrocarbons (ethane and ethylene) and a number of catalysts have been found for this reaction.^{1,2} The inevitable formation of CO₂, however, seems to be one of the most serious problems from a practical point of view.³ A novel approach is to use CO₂ as an oxidant instead of O₂, CO will be the only by-product in this case. Moreover, unlike O₂, CO₂ will not induce gas-phase radical reactions, which result in the decrease in C₂ selectivity, it thus can be expected that the development of active catalyst achieves high selectivity to C₂ hydrocarbons.

Recently, some workers have attempted the CO₂-induced selective conversion of methane to C₂ hydrocarbon. The catalytic effectiveness of more than 30 metal oxides have been reported,^{4,5} and a series of binary oxide catalysts have also been reported.⁶⁻⁹ Unfortunately, there are very few reports on the Mn-containing catalysts, although Mn is one of the most extensively studied components in oxidative coupling of methane. Recently, methane conversion to C₂ hydrocarbons with CO₂ over unsupported MnO₂ catalyst was reported, but only 0.1–0.4% C₂ yield was obtained.¹⁰ The present paper reports a novel effective Mn-containing catalyst, Mn–BaCO₃.

The catalysts with different Mn/Ba atomic ratios were prepared by simultaneously adding the solutions with appropriate concentration of Mn(NO₃)₂(A.R.), Ba(NO₃)₂(A.R.) to 1.1 times its stoichiometric requirement of a well stirred 0.5 M aqueous solution of K₂CO₃ maintained at 65 °C, the resulting slurry (pH of about 7.0) was filtered and washed several times with distilled water, the product was calcined at 900 °C after dried at 110 °C overnight, then the catalyst was crushed and sieved 20–40 mesh. The granular catalyst was first pretreated with air in a Y-type quartz reactor (I.D. 9.5 mm), followed by replacement with high pure N₂. Then, a mixture of CH₄ and CO₂ was introduced to the reactor. The standard reaction conditions were as follows: *t* = 875 °C, *P*(CH₄) = 30.3 kPa, *P*(CO₂) = 70.7 kPa, total flow rate = 100 cm³ · min⁻¹, 3.0 g catalyst was used.

After removal of H₂O from the effluent, C₂H₆, C₂H₄, CO, and H₂ were analyzed with an on-line gas chromatograph. The following reactions were taken into account for data processing:

The data processing method has been described in reference 4.

The effect of Mn/Ba ratio on the catalytic performance of Mn–BaCO₃ is shown in Table 1. As may be seen, MnO₂ alone exhibited high CH₄ conversion of 9.8% with very low C₂ selectivity of 6.3%. It is very interesting that BaCO₃ alone showed no obvious catalytic effectiveness for the reaction. For the Mn–BaCO₃ catalysts, CH₄ conversion decreased to some extent compared with that of MnO₂, but C₂ selectivity and yield increased dramatically. The fact that not only C₂ selectivity but also C₂ yield for the Mn–Ba catalysts is higher than that for each component showed that obvious synergistic interaction in C₂ formation exists between MnO₂ and BaCO₃.


Table 1. Catalytic activity for the conversion of CH₄ by CO₂

Catalyst	CH ₄ Conv. /%	C ₂ H ₄ Sel. /%	C ₂ H ₆ Sel. /%	C ₂ Yield /%
BaCO ₃	0	—	—	—
Mn/Ba(0.2)	3.5	23.1	48.3	2.6
Mn/Ba(0.4)	5.5	28.4	45.2	4.0
Mn/Ba(0.6)	5.8	29.9	41.6	4.1
Mn/Ba(0.8)	6.2	24.7	35.4	3.7
Mn/Ba(1.0)	6.8	17.4	30.8	3.4
Mn/Ba(2.0)	8.1	15.0	23.2	3.0
MnO ₂	9.8	1.1	5.2	0.6

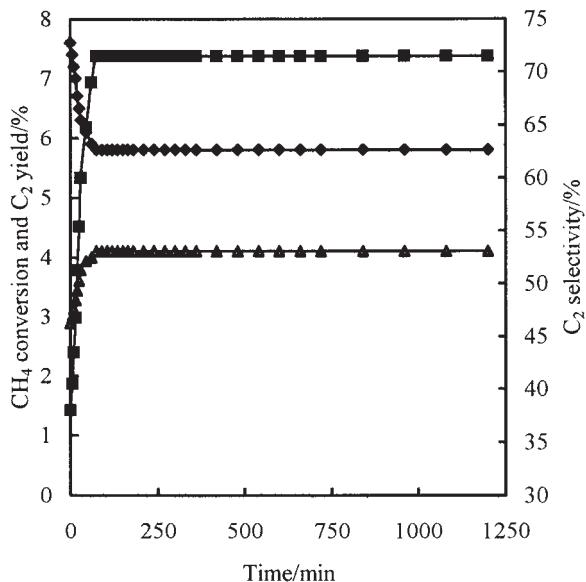
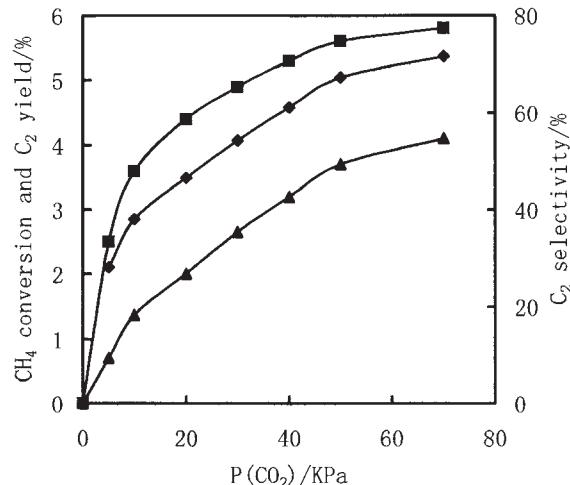

All the data were obtained after 3 h reaction under the standard reaction conditions.

Figure 1 shows the temperature dependence of the catalytic performance of Mn–BaCO₃ catalyst with Mn/Ba ratio of 0.6. As shown in Figure 1, CH₄ conversion and C₂ yield increased with the increase of reaction temperature, C₂ selectivity increased with the reaction temperature at ≤ 825 °C, the increase in reaction temperature decreased C₂ selectivity when the temperature exceeded 825 °C. CH₄ conversion of 5.8% and 8.0% was attained at 875 °C and 900 °C respectively, while C₂ selectivity was 71.5% and 58.8%. The C₂H₄/C₂H₆ ratio in C₂ hydrocarbons was not shown in Figure 1, but the selectivity of C₂H₄ and C₂H₆ was shown respectively, the results show that the C₂H₄/C₂H₆ ratio increased with the increase of reaction temperature.

The change in reaction performance with time on stream is shown in Figure 2, where the catalyst with Mn/Ba ratio of 0.6 is used. As may be seen, conversion of CH₄ and CO₂ and selectivity of C₂ reached a steady state after reaction of ca. 1.5 h and not change even after 20 h. Such the stable performance of the Mn–BaCO₃ catalyst after 1.5 h suggests that the C₂ hydrocarbons are from the reaction of CH₄ with CO₂, not with lattice oxygen atom. To verify this point, the fresh catalyst and the catalyst after reaction of 2 h, 10 h, 20 h was subjected to XRD measurement. As shown in Table 2, the crystalline phase of the fresh catalyst was

Figure 1. Dependence of catalytic performance on reaction temperature. Symbols: (◆)CH₄ conversion; (▲)C₂ yield; (■)C₂ selectivity; (●)C₂H₆ selectivity; (○)C₂H₄ selectivity.

Figure 2. Change in catalytic performance of MnO₂-BaCO₃ with time on stream. Symbols: the same as Figure 1. Standard reaction conditions.


Table 2. XRD results of MnO₂-BaCO₃ catalyst with Mn/Ba ratio of 0.6

Time/h	Crystalline phase
0	BaCO ₃ BaMnO ₃
2	BaCO ₃ MnO
10	BaCO ₃ MnO
20	BaCO ₃ MnO

BaCO₃ and BaMnO₃. BaCO₃ and MnO were detected after 2 h reaction but BaMnO₃ was no longer detected. It is obvious that under the reaction conditions, BaMnO₃ changed into BaCO₃ and MnO. The XRD peaks of MnO are very small, this may attribute to the high dispersion of Mn component. Although the Mn in the

catalyst is reduced from Mn⁴⁺ to Mn²⁺ at the initial 2 h, the crystalline phase at 2 h didn't change during further reaction, so it is reasonable to deduce that no lattice oxygen of the catalyst takes part in C₂ formation.

Figure 3 shows dependence of the performance of Mn-BaCO₃ catalyst on P(CO₂). All the data in Figure 3 were obtained after 3 h reaction. The considerable increase in C₂ selectivity with increasing P(CO₂) was observed. The observations pointed out that CO₂ plays a crucial role in the selective formation of C₂ hydrocarbons over Mn-BaCO₃ catalyst.

Figure 3. Dependence of catalytic activity on partial pressure CO₂ over the catalyst with Mn/Ba ratio of 0.6. Symbols: the same as Figure 1.

The mechanism of C₂ formation over the Mn-BaCO₃ catalyst is proposed as follows: CO₂ may first be chemisorbed on the sites with strong basicity, this may be the Ba sites, the fact that C₂ selectivity increased with P(CO₂) may partly verify this point. The CO₂ chemisorbed may then be activated on reduced Mn sites by accepting electrons to produce CO and active oxygen species O⁻, then the active oxygen species reacts with CH₄ to form C₂ hydrocarbons. The C₂ selectivity increase with P(CO₂) may suggest that high P(CO₂) increases the amount of the CO₂ chemisorbed, consequently inhibit the reaction via the redox mechanism involving the lattice oxygen and thus leads to high C₂ selectivity, keeping CH₄ conversion almost constant.

References

1. J. H. Lunsford, *Angew. Chem., Int. Ed. Engl.*, **34**, 970 (1995).
2. S. B. Li, *Chin. J. Chem.*, **19**, 16 (2001).
3. J. H. Lunsford, *Stud. Surf. Sci. Catal.*, **81**, 1 (1994).
4. K. Asami, T. Fujita, K. Kusakabe, Y. Nishiyama, and Y. Otsuka, *Appl. Catal., A*, **126**, 245 (1995).
5. K. Asami, T. Fujita, N. Ashi, and Y. Otsuka, *Stud. Surf. Sci. Catal.*, **107**, 279 (1997).
6. C. L. Chen, Y. D. Xu, G. J. Lin, and X. X. Guo, *Catal. Lett.*, **42**, 149 (1996).
7. Y. Wang, Y. Takahashi, and Y. Ohtsuka, *Chem. Lett.*, **1998**, 1209.
8. Y. Wang, Y. Takahashi, and Y. Ohtsuka, *J. Catal.*, **186**, 160 (1999).
9. Y. Wang and Y. Ohtsuka, *J. Catal.*, **192**, 252 (2000).
10. K. Asami, T. Fujita, K. Kusakabe, Y. Nishiyama, and Y. Otsuka, *J. Jpn. Petrol. Inst.*, **39**(2), 137 (1996).